5+8(3x^2+2)=23-2(2x-5)

Simple and best practice solution for 5+8(3x^2+2)=23-2(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5+8(3x^2+2)=23-2(2x-5) equation:



5+8(3x^2+2)=23-2(2x-5)
We move all terms to the left:
5+8(3x^2+2)-(23-2(2x-5))=0
We multiply parentheses
24x^2-(23-2(2x-5))+16+5=0
We calculate terms in parentheses: -(23-2(2x-5)), so:
23-2(2x-5)
determiningTheFunctionDomain -2(2x-5)+23
We multiply parentheses
-4x+10+23
We add all the numbers together, and all the variables
-4x+33
Back to the equation:
-(-4x+33)
We add all the numbers together, and all the variables
24x^2-(-4x+33)+21=0
We get rid of parentheses
24x^2+4x-33+21=0
We add all the numbers together, and all the variables
24x^2+4x-12=0
a = 24; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·24·(-12)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{73}}{2*24}=\frac{-4-4\sqrt{73}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{73}}{2*24}=\frac{-4+4\sqrt{73}}{48} $

See similar equations:

| 3y=10/2y | | 3/2=z/18 | | j/5+15=25 | | x=-72/17 | | 3.1x3.4=10.54 | | 9x+17=11x-1 | | F(x)=2^2+3x-1 | | 5.9-m=-4.5-2 | | 5h–4=22 | | 12a+5=12 | | 8-2x=142 | | -2+10x=8x+34 | | F(2)=x^2+3x-1 | | -8x+5x=5x-8 | | t/π=12.5 | | 13-n=n+3 | | 2/3x+6=1/2x+1/4x​ | | f+8=14 | | 17x-23=7 | | 3/5=3d/10-12 | | 10x+3=8x=21 | | 2/5(12-13.5x)=54/5 | | 10/7r-4=3/7r | | 37=19-2b | | 2g+13=-3 | | |2m+7|=13 | | 3(x+3)=2x-9+x | | 34+7x=3(8x+2)-3x | | 8x-8=6x-2x | | y-10/10-y,y=8 | | -7(-3n÷3)=-21÷21n | | 2.1(b+4.8)=2.7(b+7.5) |

Equations solver categories